0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class FibSLR {
public static int fib(int n){
if (n < 2) return 1;
else return fib(n-1) + fib(n-2);
}
public static int doSum(List x){
if (x==null) return 1;
else return fib(x.head) + doSum(x.tail);
}
public static void main(String [] args) {
Random.args = args;
List l = List.mk(Random.random()*Random.random());
//System.out.println(doSum(l));
}
}
public class List {
public int head;
public List tail;
public List(int head, List tail) {
this.head = head;
this.tail = tail;
}
public List getTail() {
return tail;
}
public static List mk(int len) {
List result = null;
while (len-- > 0)
result = new List(Random.random(), result);
return result;
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
if (index >= args.length)
return 0;
String string = args[index];
index++;
return string.length();
}
}
Generated 61 rules for P and 49 rules for R.
Combined rules. Obtained 6 rules for P and 0 rules for R.
Filtered ground terms:
1260_0_mk_Inc(x1, x2, x3, x4) → 1260_0_mk_Inc(x2, x3, x4)
List(x1) → List
Cond_1316_1_mk_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_1316_1_mk_InvokeMethod(x1, x2, x3, x4)
1316_0_random_LT(x1, x2, x3) → 1316_0_random_LT(x2, x3)
1316_1_mk_InvokeMethod(x1, x2, x3, x4, x5) → 1316_1_mk_InvokeMethod(x1, x2, x3)
Cond_1345_1_mk_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_1345_1_mk_InvokeMethod(x1, x2, x3, x4)
1345_0_random_IntArithmetic(x1, x2, x3, x4) → 1345_0_random_IntArithmetic(x2, x3)
1345_1_mk_InvokeMethod(x1, x2, x3, x4, x5) → 1345_1_mk_InvokeMethod(x1, x2, x3)
Cond_1327_1_mk_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_1327_1_mk_InvokeMethod(x1, x2, x3, x4)
1327_0_random_ArrayAccess(x1, x2, x3) → 1327_0_random_ArrayAccess(x2, x3)
1327_1_mk_InvokeMethod(x1, x2, x3, x4, x5) → 1327_1_mk_InvokeMethod(x1, x2, x3)
Cond_1315_1_mk_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_1315_1_mk_InvokeMethod(x1, x2, x3, x4)
1315_0_random_LT(x1, x2, x3) → 1315_0_random_LT(x2, x3)
1315_1_mk_InvokeMethod(x1, x2, x3, x4, x5) → 1315_1_mk_InvokeMethod(x1, x2, x3)
Cond_1260_0_mk_Inc1(x1, x2, x3, x4, x5) → Cond_1260_0_mk_Inc1(x1, x3, x4, x5)
Cond_1260_0_mk_Inc(x1, x2, x3, x4, x5) → Cond_1260_0_mk_Inc(x1, x3, x4, x5)
Filtered duplicate args:
1260_0_mk_Inc(x1, x2, x3) → 1260_0_mk_Inc(x2, x3)
Cond_1260_0_mk_Inc1(x1, x2, x3, x4) → Cond_1260_0_mk_Inc1(x1, x3, x4)
Cond_1260_0_mk_Inc(x1, x2, x3, x4) → Cond_1260_0_mk_Inc(x1, x3, x4)
Filtered unneeded arguments:
1260_0_mk_Inc(x1, x2) → 1260_0_mk_Inc(x2)
Cond_1260_0_mk_Inc(x1, x2, x3) → Cond_1260_0_mk_Inc(x1, x3)
Cond_1260_0_mk_Inc1(x1, x2, x3) → Cond_1260_0_mk_Inc1(x1, x3)
1315_1_mk_InvokeMethod(x1, x2, x3) → 1315_1_mk_InvokeMethod(x1, x2)
Cond_1315_1_mk_InvokeMethod(x1, x2, x3, x4) → Cond_1315_1_mk_InvokeMethod(x1, x2, x3)
1327_1_mk_InvokeMethod(x1, x2, x3) → 1327_1_mk_InvokeMethod(x1, x2)
Cond_1327_1_mk_InvokeMethod(x1, x2, x3, x4) → Cond_1327_1_mk_InvokeMethod(x1, x2, x3)
1345_1_mk_InvokeMethod(x1, x2, x3) → 1345_1_mk_InvokeMethod(x1, x2)
Cond_1345_1_mk_InvokeMethod(x1, x2, x3, x4) → Cond_1345_1_mk_InvokeMethod(x1, x2, x3)
1316_1_mk_InvokeMethod(x1, x2, x3) → 1316_1_mk_InvokeMethod(x1, x2)
Cond_1316_1_mk_InvokeMethod(x1, x2, x3, x4) → Cond_1316_1_mk_InvokeMethod(x1, x2, x3)
Filtered all free variables:
1315_1_mk_InvokeMethod(x1, x2) → 1315_1_mk_InvokeMethod(x2)
1316_1_mk_InvokeMethod(x1, x2) → 1316_1_mk_InvokeMethod(x2)
Cond_1315_1_mk_InvokeMethod(x1, x2, x3) → Cond_1315_1_mk_InvokeMethod(x1, x3)
1327_1_mk_InvokeMethod(x1, x2) → 1327_1_mk_InvokeMethod(x2)
Cond_1327_1_mk_InvokeMethod(x1, x2, x3) → Cond_1327_1_mk_InvokeMethod(x1, x3)
1345_1_mk_InvokeMethod(x1, x2) → 1345_1_mk_InvokeMethod(x2)
Cond_1345_1_mk_InvokeMethod(x1, x2, x3) → Cond_1345_1_mk_InvokeMethod(x1, x3)
Cond_1316_1_mk_InvokeMethod(x1, x2, x3) → Cond_1316_1_mk_InvokeMethod(x1, x3)
Combined rules. Obtained 3 rules for P and 0 rules for R.
Finished conversion. Obtained 3 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x4[0] →* x0[1]))
(0) -> (3), if ((x4[0] →* x0[3]))
(1) -> (2), if ((x0[1] > 0 →* TRUE)∧(x0[1] →* x0[2]))
(2) -> (1), if ((x0[2] + -1 →* x0[1]))
(2) -> (3), if ((x0[2] + -1 →* x0[3]))
(3) -> (4), if ((x0[3] > 0 →* TRUE)∧(x0[3] →* x0[4]))
(4) -> (0), if ((x0[4] + -1 →* x4[0]))
(1) (x4[0]=x0[1] ⇒ 1345_1_MK_INVOKEMETHOD(x4[0])≥NonInfC∧1345_1_MK_INVOKEMETHOD(x4[0])≥1260_0_MK_INC(x4[0])∧(UIncreasing(1260_0_MK_INC(x4[0])), ≥))
(2) (1345_1_MK_INVOKEMETHOD(x4[0])≥NonInfC∧1345_1_MK_INVOKEMETHOD(x4[0])≥1260_0_MK_INC(x4[0])∧(UIncreasing(1260_0_MK_INC(x4[0])), ≥))
(3) ((UIncreasing(1260_0_MK_INC(x4[0])), ≥)∧[(-1)bso_13] ≥ 0)
(4) ((UIncreasing(1260_0_MK_INC(x4[0])), ≥)∧[(-1)bso_13] ≥ 0)
(5) ((UIncreasing(1260_0_MK_INC(x4[0])), ≥)∧[(-1)bso_13] ≥ 0)
(6) ((UIncreasing(1260_0_MK_INC(x4[0])), ≥)∧0 = 0∧[(-1)bso_13] ≥ 0)
(7) (x4[0]=x0[3] ⇒ 1345_1_MK_INVOKEMETHOD(x4[0])≥NonInfC∧1345_1_MK_INVOKEMETHOD(x4[0])≥1260_0_MK_INC(x4[0])∧(UIncreasing(1260_0_MK_INC(x4[0])), ≥))
(8) (1345_1_MK_INVOKEMETHOD(x4[0])≥NonInfC∧1345_1_MK_INVOKEMETHOD(x4[0])≥1260_0_MK_INC(x4[0])∧(UIncreasing(1260_0_MK_INC(x4[0])), ≥))
(9) ((UIncreasing(1260_0_MK_INC(x4[0])), ≥)∧[(-1)bso_13] ≥ 0)
(10) ((UIncreasing(1260_0_MK_INC(x4[0])), ≥)∧[(-1)bso_13] ≥ 0)
(11) ((UIncreasing(1260_0_MK_INC(x4[0])), ≥)∧[(-1)bso_13] ≥ 0)
(12) ((UIncreasing(1260_0_MK_INC(x4[0])), ≥)∧0 = 0∧[(-1)bso_13] ≥ 0)
(13) (>(x0[1], 0)=TRUE∧x0[1]=x0[2] ⇒ 1260_0_MK_INC(x0[1])≥NonInfC∧1260_0_MK_INC(x0[1])≥COND_1260_0_MK_INC(>(x0[1], 0), x0[1])∧(UIncreasing(COND_1260_0_MK_INC(>(x0[1], 0), x0[1])), ≥))
(14) (>(x0[1], 0)=TRUE ⇒ 1260_0_MK_INC(x0[1])≥NonInfC∧1260_0_MK_INC(x0[1])≥COND_1260_0_MK_INC(>(x0[1], 0), x0[1])∧(UIncreasing(COND_1260_0_MK_INC(>(x0[1], 0), x0[1])), ≥))
(15) (x0[1] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1260_0_MK_INC(>(x0[1], 0), x0[1])), ≥)∧[(-1)Bound*bni_14] + [(2)bni_14]x0[1] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(16) (x0[1] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1260_0_MK_INC(>(x0[1], 0), x0[1])), ≥)∧[(-1)Bound*bni_14] + [(2)bni_14]x0[1] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(17) (x0[1] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1260_0_MK_INC(>(x0[1], 0), x0[1])), ≥)∧[(-1)Bound*bni_14] + [(2)bni_14]x0[1] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(18) (x0[1] ≥ 0 ⇒ (UIncreasing(COND_1260_0_MK_INC(>(x0[1], 0), x0[1])), ≥)∧[(-1)Bound*bni_14 + (2)bni_14] + [(2)bni_14]x0[1] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(19) (COND_1260_0_MK_INC(TRUE, x0[2])≥NonInfC∧COND_1260_0_MK_INC(TRUE, x0[2])≥1260_0_MK_INC(+(x0[2], -1))∧(UIncreasing(1260_0_MK_INC(+(x0[2], -1))), ≥))
(20) ((UIncreasing(1260_0_MK_INC(+(x0[2], -1))), ≥)∧[1 + (-1)bso_17] ≥ 0)
(21) ((UIncreasing(1260_0_MK_INC(+(x0[2], -1))), ≥)∧[1 + (-1)bso_17] ≥ 0)
(22) ((UIncreasing(1260_0_MK_INC(+(x0[2], -1))), ≥)∧[1 + (-1)bso_17] ≥ 0)
(23) ((UIncreasing(1260_0_MK_INC(+(x0[2], -1))), ≥)∧0 = 0∧[1 + (-1)bso_17] ≥ 0)
(24) (>(x0[3], 0)=TRUE∧x0[3]=x0[4] ⇒ 1260_0_MK_INC(x0[3])≥NonInfC∧1260_0_MK_INC(x0[3])≥COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])∧(UIncreasing(COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])), ≥))
(25) (>(x0[3], 0)=TRUE ⇒ 1260_0_MK_INC(x0[3])≥NonInfC∧1260_0_MK_INC(x0[3])≥COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])∧(UIncreasing(COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])), ≥))
(26) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x0[3] ≥ 0∧[(-1)bso_19] ≥ 0)
(27) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x0[3] ≥ 0∧[(-1)bso_19] ≥ 0)
(28) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x0[3] ≥ 0∧[(-1)bso_19] ≥ 0)
(29) (x0[3] ≥ 0 ⇒ (UIncreasing(COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])), ≥)∧[(-1)Bound*bni_18 + (2)bni_18] + [(2)bni_18]x0[3] ≥ 0∧[(-1)bso_19] ≥ 0)
(30) (COND_1260_0_MK_INC1(TRUE, x0[4])≥NonInfC∧COND_1260_0_MK_INC1(TRUE, x0[4])≥1345_1_MK_INVOKEMETHOD(+(x0[4], -1))∧(UIncreasing(1345_1_MK_INVOKEMETHOD(+(x0[4], -1))), ≥))
(31) ((UIncreasing(1345_1_MK_INVOKEMETHOD(+(x0[4], -1))), ≥)∧[2 + (-1)bso_21] ≥ 0)
(32) ((UIncreasing(1345_1_MK_INVOKEMETHOD(+(x0[4], -1))), ≥)∧[2 + (-1)bso_21] ≥ 0)
(33) ((UIncreasing(1345_1_MK_INVOKEMETHOD(+(x0[4], -1))), ≥)∧[2 + (-1)bso_21] ≥ 0)
(34) ((UIncreasing(1345_1_MK_INVOKEMETHOD(+(x0[4], -1))), ≥)∧0 = 0∧[2 + (-1)bso_21] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1345_1_MK_INVOKEMETHOD(x1)) = [2]x1
POL(1260_0_MK_INC(x1)) = [2]x1
POL(COND_1260_0_MK_INC(x1, x2)) = [-1] + [2]x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_1260_0_MK_INC1(x1, x2)) = [2]x2
1260_0_MK_INC(x0[1]) → COND_1260_0_MK_INC(>(x0[1], 0), x0[1])
COND_1260_0_MK_INC(TRUE, x0[2]) → 1260_0_MK_INC(+(x0[2], -1))
COND_1260_0_MK_INC1(TRUE, x0[4]) → 1345_1_MK_INVOKEMETHOD(+(x0[4], -1))
1260_0_MK_INC(x0[1]) → COND_1260_0_MK_INC(>(x0[1], 0), x0[1])
1260_0_MK_INC(x0[3]) → COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])
1345_1_MK_INVOKEMETHOD(x4[0]) → 1260_0_MK_INC(x4[0])
1260_0_MK_INC(x0[3]) → COND_1260_0_MK_INC1(>(x0[3], 0), x0[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (3), if ((x4[0] →* x0[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(4) -> (0), if ((x0[4] + -1 →* x4[0]))